<table>
<thead>
<tr>
<th>Week</th>
<th>Objective</th>
<th>Elaborations</th>
<th>Resources</th>
<th>Assessments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 1-3 | Statistics
Data representation and interpretation
(ACMSP228)
(ACMSP282)
(ACMSP283)
Chance
(ACMSP227) | - Compare data displays using mean, median and range to describe and interpret numerical data sets in terms of location (centre) and spread
- Construct back-to-back stem-and-leaf plots and histograms and describe data, using terms including ‘skewed’, ‘symmetric’ and ‘bi modal’
- Investigate reports of surveys in digital media and elsewhere for information on how data were obtained to estimate population means and medians | Chapter 1
Chapter 9
Chapter 19 | INV 1 Wk3 |
| 4-6 | Number and Indices
Real Numbers
(ACMNA209)
(ACMNA210)
(ACMNA212) | - Use index rules to simplify expressions including positive and negative indices
- Scientific notation
- $a^m \times a^n = a^{m+n}$
- $a^m \div a^n = a^{m-n}$
- $a^0 = 1$
- $a^{-m} = \frac{1}{a^m}$
- $(a^m)^n = a^{mn}$
- $\sqrt[n]{a^m} = a^{\frac{m}{n}}$
- Apply the index laws to numbers and express numbers in scientific notation. | Chapter 2
Chapter 1 p1-14
Chapter 11 p143-151 | Test 1 Wk 5 |
| 7-9 | Measurement
Using units of measurement
(ACMMG216)
(ACMMG217)
(ACMMG218)
(ACMMG219) | - Area of composite shapes: including rectangles, triangles, parallelograms, kites, trapeziums, circles
- Find the volume of prisms and cylinders
- Find the surface area of prisms and cylinders
- Investigate very small and very large time scales and intervals | Chapter 3
Chapter 3
Chapter 13 | Test 2 Wk 8 |
<table>
<thead>
<tr>
<th>Term 2</th>
</tr>
</thead>
</table>
| 1-3 | **Algebra**
Patterns and Algebra
(ACMNA213) | - understanding that the distributive law can be applied to algebraic expressions as well as numbers
- understanding the relationship between expansion and factorisation and identifying algebraic factors in algebraic expressions
- expanding e.g. $5(p+4)$, $2m(4m-3n)$, $3(2-b)-(4-b)$
- expanding binomials, perfect squares
- factorising trinomials x^2+5x+6 |
| **Chapter 4** | Chapter 4
Chapter 2 p20-24
Chapter 18 p252-253 |
| 4-6 | **Ratio and Proportion**
Real Number
(ACMNA208) | - Solve problems involving direct proportion. Explore the relationship between graphs and equations corresponding to simple rate problems |
| **Chapter 5** | Chapter 2
Chapter 6 |
| 7-9 | **Congruence and Similarity**
Geometric Reasoning
(ACMMM220)
(ACMMM221) | - Use the enlargement transformation to explain similarity and develop the conditions for triangles to be similar
- Establish the conditions for similarity AA, SSS, SAS, RHS (prove)
- Establish the conditions for congruence SSS, AAS, SAS, RHS (prove)
- Solve problems using ratio and scale factors of the similar triangles |
| **Chapter 6** | Chapter 6
Chapter 8 |

Text Book: Nelson WA Maths 9
Text book: TERRY DWYER MATHEMATICS 9
YEAR 9 Extension

<table>
<thead>
<tr>
<th>Week</th>
<th>Objective</th>
<th>Elaborations</th>
<th>Resources (NELSON 9)</th>
<th>Assessments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 1-3 | Probability Chance (ACMSP225) (ACMSP226) | • Tree diagrams, venn diagrams and two-way tables
• Two step experiments with and without replacement
• Relative frequencies
• Questions involving “and” & “or” | Chapter 7
Chapter 14 | Inv 3 Wk 2
Chapter 14 |
| 4-6 | Equations Linear and non-linear relationships (ACMNA215) | • determining linear rules from suitable diagrams, tables of values and graphs and describing them using both words and algebra
• Solving linear equations with variables on both sides \[
2x + 4 = 3(x + 9)
\]
\[
\frac{7k - 3}{4} = \frac{13 - 5k}{4}
\]
\[
2x + 4 = 3(x + 9)
\]
\[
\frac{7k - 3}{4} = \frac{13 - 5k}{4}
\]
\[
2x + 4 = 3(x + 9)
\]
\[
\frac{7k - 3}{4} = \frac{13 - 5k}{4}
\]
\[
2x + 4 = 3(x + 9)
\]
\[
\frac{7k - 3}{4} = \frac{13 - 5k}{4}
\]
\[
2x + 4 = 3(x + 9)
\]
\[
\frac{7k - 3}{4} = \frac{13 - 5k}{4}
\] | Chapter 8
Chapter 4 p51-53 | Test 4 Wk 5
Chapter 4 p51-53 |
| 7-9 | Trigonometry Pythagoras and trigonometry (ACMMG222) (ACMMG223) (ACMMG224) | • Pythagoras’ theorem
• Sine, cosine and tangent
• Solve right angled triangles | Chapter 9
Chapter 7
Chapter 12
Chapter 17 | Test 5 Wk 9
Chapter 7
Chapter 12
Chapter 17 |
| **Term 4** | | | | |
| 1-3 | Coordinates and Graphs Linear and non-linear relationships (ACMNA214) (ACMNA215) (ACMNA294) (ACMNA296) | • determining linear rules from suitable diagrams, tables of values and graphs and describing them using both words and algebra
• investigating graphical and algebraic techniques for finding distance between two points
• using Pythagoras’ theorem to calculate distance between two points
• Real life applications for finding the distance between two points
• investigating graphical and algebraic techniques for finding midpoint and gradient | Chapter 10
Chapter 16 p214-221 | Inv 4 Wk 2
Chapter 16 p214-221
Chapter 4 p49-56 |
recognising that the gradient of a line is the same as the gradient of any line segment on that line
• Graph \(y=mx + c \) gradient and \(y \)-intercept
• Find the equation given the gradient and point.
• Find the equation of line given two points
• graphing parabolas, and circles connecting \(x \)-intercepts of a graph to a related equation
• graphing quadratics in the form \(y=a(x-p)^2+q \) line of symmetry \(y=p \) turning point \((p,q)\)
• Sketching circles in the form \(x^2+y^2=r^2 \) and \((x-h)^2+(y-k)^2=r^2 \)
• Top groups include exponentials and hyperbolas

| Shapes and Angles | Geometric reasoning (ACMGG220) | Angle properties of parallel lines
| | | Properties of triangles and quadrilaterals
| | | Proofs using congruent triangles
| | | using the enlargement transformation to establish similarity understanding that similarity and congruence help describe relationships between geometrical shapes and are important elements of reasoning and proof

4-6

| Money and Business | Money and financial mathematics (ACMNA211) | Simple interest

7-9

NB. The scheduled assessments above may alter due to unforeseen internal school events or circumstances.

<table>
<thead>
<tr>
<th>Assessment Weightings</th>
<th>Weight % /Assessment</th>
<th>Number</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tests</td>
<td>8</td>
<td>6</td>
<td>48</td>
</tr>
<tr>
<td>Investigations</td>
<td>6</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>Exams</td>
<td>Sem 1 (12%) Sem 2 (16%)</td>
<td>2</td>
<td>28</td>
</tr>
</tbody>
</table>